Ela on the Trace Characterization of the Joint Spectral Radius
نویسنده
چکیده
Abstract. A characterization of the joint spectral radius, due to Chen and Zhou, relies on the limit superior of the k-th root of the dominant trace over products of matrices of length k. In this note, a sufficient condition is given such that the limit superior takes the form of a limit. This result is useful while estimating the joint spectral radius. Although it applies to a restricted class of matrices, it appears to be relevant to many realistic situations.
منابع مشابه
On the trace characterization of the joint spectral radius
A characterization of the joint spectral radius, due to Chen and Zhou, relies on the limit superior of the k-th root of the dominant trace over products of matrices of length k. In this note, a sufficient condition is given such that the limit superior takes the form of a limit. This result is useful while estimating the joint spectral radius. Although it applies to a restricted class of matric...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملCartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملEla Variational Characterizations of the Sign-real and the Sign-complex Spectral Radius∗
The sign-real and the sign-complex spectral radius, also called the generalized spectral radius, proved to be an interesting generalization of the classical Perron-Frobenius theory (for nonnegative matrices) to general real and to general complex matrices, respectively. Especially the generalization of the well-known Collatz-Wielandt max-min characterization shows one of the many one-to-one cor...
متن کاملOn spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کامل